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Abstract
Metabolomics, an omic science in systems biology, is the global quantitative assessment of
endogenous metabolites within a biological system. Either individually or grouped as a metabolomic
profile, detection of metabolites is carried out in cells, tissues, or biofluids by either nuclear magnetic
resonance spectroscopy or mass spectrometry. There is potential for the metabolome to have a
multitude of uses in oncology, including the early detection and diagnosis of cancer and as both a
predictive and pharmacodynamic marker of drug effect. Despite this, there is lack of knowledge in
the oncology community regarding metabolomics and confusion about its methodologic processes,
technical challenges, and clinical applications. Metabolomics, when used as a translational research
tool, can provide a link between the laboratory and clinic, particularly because metabolic and
molecular imaging technologies, such as positron emission tomography and magnetic resonance
spectroscopic imaging, enable the discrimination of metabolic markers noninvasively in vivo. Here,
we review the current and potential applications of metabolomics, focusing on its use as a biomarker
for cancer diagnosis, prognosis, and therapeutic evaluation.

History and Definitions
The omic sciences of systems biology (Fig. 1), including genomics, transcriptomics,
proteomics, and metabolomics, have been in existence for decades, whereas much attention
has been focused on their development and application in the last several years. Metabolomics
is an analytic tool used in conjunction with pattern recognition approaches and bioinformatics
to detect metabolites and follow their changes in biofluids or tissue (1-3). Precise numbers of
human metabolites is unknown, with estimates ranging from the thousands to tens of thousands.
Metabolomics is a term that encompasses several types of analyses, including (a) metabolic
fingerprinting, which measures a subset of the whole profile with little differentiation or
quantitation of metabolites (4); (b) metabolic profiling, the quantitative study of a group of
metabolites, known or unknown, within or associated with a particular metabolic pathway
(5,6); and (c) target isotope-based analysis, which focuses on a particular segment of the
metabolome by analyzing only a few selected metabolites that comprise a specific biochemical
pathway (7).

Metabolomics allows for a global assessment of a cellular state within the context of the
immediate environment, taking into account genetic regulation, altered kinetic activity of
enzymes, and changes in metabolic reactions (2,8,9). Thus, compared with genomics or
proteomics, metabolomics reflects changes in phenotype and therefore function. The omic
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sciences are, however, complementary as “upstream” changes in genes and proteins are
measured “downstream” as changes in cellular metabolism (2,7). The converse, however, is
that metabolomics is also a terminal view of the biological system, not allowing for
representation of the genes and proteins that are increased or decreased. Other features of
metabolomics are similar to those of proteomics and transcriptomics, including the ability to
assay biofluids or tumor samples and the relatively inexpensive, rapid, and automated
techniques once start-up costs are taken into account.

The origin of metabolomics dates back decades, with initial key applications in the fields of
inborn metabolic errors, toxicology, and functional nutrigenomics. Interestingly, modern
interest of metabolomics in oncology originally stemmed from the claim in the late 1980s that
cancer could be identified by nuclear magnetic resonance (NMR) spectra of blood samples
(10). Unfortunately, these data were later found to be falsified and the field of metabolomics
was tainted. Despite this, the notion has persisted that correctly applying metabolomics on
patient specimens may affect oncologic practice. Recent technological progress in NMR
spectroscopy and mass spectrometry (MS), the two most accepted methods used in the
measurement of metabolites, has improved the sensitivity and spectral resolution of analytic
assays on metabolomic samples in attempts to achieve a comprehensive biochemical
assessment. Because cancer cells are known to possess a highly unique metabolic phenotype,
development of specific biomarkers in oncology is possible and might be used in identifying
fingerprints, profiles, or signatures to detect the presence of cancer, determine prognosis, and/
or assess the pharmacodynamic effects of therapy (2,11-20). In this review, we will present
metabolomics methodology and discuss how it is being applied in the field of oncology with
particular attention to its application as a biomarker in cancer diagnosis, assessing treatment
effects, and in the development of novel therapeutics.

Translational Relevance

This review article presents metabolomics methodology and focuses on the current and
potential applications of metabolomics in oncology with particular attention to its use as a
biomarker in cancer diagnosis, prognosis, and therapeutic evaluation. We believe this to be
an important and interesting topic that bridges preclinical and clinical oncology. We think
this article will appeal to both translational researchers and clinicians as it reviews up-to-
date evidence on the utility of metabolomics, an often poorly understood topic.
Metabolomics has the potential to influence clinical oncology affecting patient care with
benefits already being seen with the use of metabolite imaging in breast and prostate cancer
diagnosis and probable future uses as a biomarker for early cancer diagnosis, determination
of treatment efficacy, and in developing novel therapeutics.

Metabolomic Methodology
Metabolomic samples

Metabolomic assessment can be pursued both in vitro and in vivo using cells, fluids, or tissues.
With regard to acquisition and simplicity of sample preparation, biofluids are the easiest
samples to work with and can include serum, plasma, urine, ascitic fluid, saliva, bronchial
washes, prostatic secretions, or fecal water. Most experience to date is with serum and urine
samples as a surrogate system for tumor biochemistry. Interest is evolving for metabolomic
studies directly using tumor tissue; however, such analyses require a more difficult and careful
tissue preparation due to tissue heterogeneity. Surrounding stromal and epithelial cells can
cause contamination of the resulting metabolic profile, thereby skewing results compared with
that obtained from a pure tumor tissue sample. Microdissection techniques could enhance
sample purity but also increase the required equipment and expertise.
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Information on sample requirements and handling for metabolomics analysis has been
published previously (13,21,22). Briefly, all biological samples collected for metabolic
analysis require careful sample handling, such as special requirements for diet, physical
activities, and other patient validation before sample collection. Due to high susceptibility of
metabolic pathways to exogenous environment, maintaining low temperature and consistent
sample extraction is essential. For biofluids, the standard sample volume is accepted to be in
the range of 0.1 to 0.5 mL. For NMR, minimal sample preparation is required for urine and
other low-molecular-weight metabolite-containing fluids, whereas blood, plasma, and serum
require extraction (using acid, acetonitrile, or two-phase methanol/chloroform protocols) or
NMR-weighted techniques to separate polar and lipophilic metabolites (see Table 1; refs. 23,
24). Intact tissue specimens (e.g., biopsies, fine needle aspirates) can be analyzed using high-
resolution magic angle spinning (HR-MAS). HR-MAS probes for solid state NMR, as well as
cryoprobes and microprobes for liquid NMR, permit quantitative metabolic analysis on
samples as small as 3 μL with improved signal-to-noise ratios and solvent suppression (5). MS
analysis requires more labor-intensive and destructive tissue preparation than NMR, but has
greater sensitivity for metabolite detection (5).

Analytic techniques
In general, NMR spectroscopy (mostly 1H-NMR) and MS [particularly liquid chromatography
(LC)/MS and Fourier transform ion cyclotron resonance Fourier transform/MS] are the two
major spectroscopic techniques used in metabolic analysis. The basic workflow for NMR-
based as well as MS-based studies is as follows: quenching/extraction of metabolites → data
collection → data processing/analysis (5,13). NMR exploits the behavior of molecules when
placed in a magnetic field, allowing the identification of different nuclei based on their resonant
frequency. MS determines the composition of molecules based on the mass-to-charge ratio in
charged particles. The resultant metabolite detection and quantification is acquired as a data
set called a spectrum. Each technique has distinct advantages and disadvantages (25). For
example, LC/MS is highly sensitive, typically at the picogram level, and permits highly specific
multiple metabolite identification at low concentrations (21). However, MS sensitivity is
dependent on metabolite pK and hydrophobicity (26). Whereas polar molecules may be
detected when electrospray ionization is used, nonpolar molecules may require atmospheric
pressure chemical ionization. Similarly, the methods of extraction, quenching, and sample
storage conditions can affect and potentially modify metabolite structure, thereby confounding
already complex data sets and introducing greater sample-to-sample variability. Despite the
extensive use of MS to assess small molecules, a widely adopted and validated methodology
for sensitive, high-throughput discovery-based LC/MS metabolomics is lacking. Although
high-resolution methods exist for gas chromatography (GS)/MS profiling, detectable
compounds are limited to those that can be derived, which can be time-consuming, costly, and
runs the risk of metabolite loss. Conversely, LC/MS has only recently begun to be applied to
metabolic profiling due to advances in chromatography, instrumentation, ionization
capabilities, and software. To date, LC/MS–based metabolic profiling experiments have
confirmed that metabolic data sets are robust and reproducible and are comparable between
different laboratories to reveal pathology-based metabolic differences in human samples
(27); these methodologies are currently undergoing validation (28).

Compared with MS, NMR is less sensitive, on the order of 10 μmol/L, and requires more
expensive instrumentation. In addition, 1H-NMR spectra are sensitive to pH, ionic content,
and temperature, and may require solvent suppression. The major advantages of 1H-NMR
include its nonbiased metabolite detection, quantitative nature, and reproducibility. 1H-NMR
can also be used for liquid or solid samples, using magic angle spinning (HR-MAS) techniques,
with minimal sample preparation (13). 31P-NMR of tissue specimens and cultured cells reflects
products of energy or phospholipid metabolism, whereas 13C-NMR measures dynamic carbon
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fluxes, such as glucose metabolism. 13C-NMR can be performed on tissues and cell extracts
following incubation with a 13C-labeled precursor, but is less sensitive than GS/MS–
based 13C-assays. Another significant advantage of NMR is that metabolic markers discovered
and analyzed in vitro can be measured in vivo, assuming sufficient tissue abundance, using
localized magnetic resonance spectroscopy imaging (MRSI). MRSI is an additional technology
related to magnetic resonance imaging (MRI) whereby metabolites instead of anatomy are
imaged. In essence, MRSI is a composite of traditional NMR spectroscopy and MRI that allows
for noninvasive in vivo visualization and determination of spatial distribution of a specific
metabolite in patients without exposure to ionizing radiation. Another metabolic imaging
alternative is positron emission tomography (PET), which uses radioactively labeled
metabolites or their precursors for in vivo imaging. With such tools, preclinical and in vitro
assessments can be confirmed in intact living systems.

Data analysis and interpretation
The guiding principle of metabolomics is the global assessment of hundreds of endogenous
metabolites in a biological sample simultaneously. Statistical analyses are then applied to
provide meaningful information about the metabolic profile of the sample. The three major
steps in multivariate metabolomics analyses are depicted in Fig. 2.

Because 1H-NMR or MS spectra from biofluids or tumor tissue contain hundreds of signals
from endogenous metabolites and are highly redundant, spectral data sets, reduced to 100 to
500 spectral segments, and their respective signal intensities are directly entered into statistical
programs (5,21,29). This first step of metabolomics analysis facilitates pattern recognition, or
group clustering, such as normal versus cancer or responders versus nonresponders, based on
spectral pattern differences. The interpretation of scores reveals information about
relationships between samples and illustrates trends, groupings, and/or outliers. In the last 5
years, due to the quantity and complexity of spectroscopic data from NMR and MS studies,
the majority of metabolic profiling studies have used computer-aided statistical interpretation
of the data. This improves the refining and distilling of complex raw data. Similar to gene array
analyses, multivariate statistics have been designed for large data sets, with two major types
of pattern recognition processes, unsupervised and supervised. Unsupervised data analysis,
such as hierarchical cluster analysis and principal component analysis, measures the innate
variation in data sets, whereas the supervised approach, including principal component
regression and neural networks, uses prior information to generate the clusters of patterns
(30). Although beyond the scope of this review, many other statistical approaches exist,
including cluster analysis, linear discriminant analysis, Bayesian spectral decomposition, and
several other chemometric methods (31).

In the next step, the specific spectral regions that are responsible for group clustering in step
1 are identified and linked to a specific metabolite based on its NMR chemical shifts. To
accomplish this, a database search, for example, at the Human Metabolome Database,3 is often
used. The third and final step of analysis includes quantitation and association of putative
biomarkers with respect to a particular characteristic or outcome, such as tumor grade or
response to therapy. The statistical approach of this step can be represented by a standard
Student’s t test or ANOVA, depending on the group number and size.

There has recently been an initiative to form large databases to collect and pool information
on the metabolome. A free-access online metabolite database exists that is supported by
Genome Alberta and Genome Canada4 (32). This database contains detailed information on

3http://www.hmdb.ca/
4http://www.hmdb.ca
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nearly 2,500 human metabolites and includes genomic and proteomic links and allows for
comparisons of metabolites using search tools for MS and NMR data. Several other databases
also exist, or are under construction, including a NIH initiative.5 The goal of these databases
is to facilitate links between clinical, chemical, molecular, and biological data that is crucial
as metabolomic data accumulates and biomarkers are tested and validated.

Metabolomics as a Biomarker in Oncology
The cancer metabolome

Biomarkers are widely used in clinical medicine for prognostic or predictive purposes.
Examples in oncology are the estrogen receptor and Her2/neu status in breast cancer. In general,
quantitative metabolomic biomarkers for cancer detection and/or assessment of treatment
efficacy are explored preclinically using animal and human cell cultures, followed by
validation in biofluid or tumor tissue.

The tumor metabolome is beginning to be characterized. Using standard metabolomic methods,
tumors, in general, display elevated phospholipid levels [characterized by an elevation of total
choline-containing compounds (tCho) and phosphocholine], increased glycolytic capacity,
including increased utilization of glucose carbons to drive synthetic processes, high
glutaminolytic function, and overexpression of the glycolytic isoenzyme, pyruvate kinase type
M2 (M2-PK; refs. 12,33,34). M2-PK may be of particular interest as its inactive dimeric form
is dominant in tumors and has been named tumor M2-PK. Interestingly, lipid metabolic profiles
have been documented to be 83% accurate at discriminating between cancer patients and
controls, using NMR-based metabolomics of blood samples (35). Importantly, in vivo, tCho
determination via MRSI has detected breast, prostate, and brain tumors and correlates well
with diagnosis via dynamic contrast enhanced-MRI (16,36-39).

Despite these gains, there are several gaps in knowledge about the tumor metabolome. Among
distinct tumor types, profiles vary with respect to many metabolites, including alanine, citrate,
glycine, lactate, nucleotides, and lipids, making it difficult to generalize findings across tumor
groups (2). There are also technical issues encountered while performing metabolomic analyses
that may hinder characterization of a tumor metabolome, including sample-to-sample variation
and sensitivity, particularly for extraction-dependent MS-based techniques.

Cancer diagnosis
Pattern recognition technologies in all omics have been used for the diagnosis of several tumor
types using a variety of experimental platforms. Perhaps the best application of metabolomics
thus far in cancer diagnostics is in breast cancer. Several NMR studies have analyzed breast
biopsy samples and have identified over 30 endogenous metabolites in breast tissue. Breast
cancers reliably showed elevated tCho levels (resulting from increased phosphocholine), low
glycerophosphocholine, and low glucose compared with benign tumors or healthy tissue (17,
40-42). Furthermore, when 91 breast cancers and 48 adjacent normal tissue specimens were
examined after surgical resection using HR-MAS 1H-NMR metabolomics, a malignant
phenotype could reliably be detected from normal tissue with sensitivity and specificity
between 83% and 100% for tumor size, lymph node, and hormonal status, as well as histology
(17). In vivo, when MRSI of the breast is performed on patients before biopsy, precise
differentiation of cancer and benign tissue is possible based on choline detection, with a
sensitivity of 100%. Importantly, a biopsy could have been prevented 68% of the time if only
performed on the choline-positive tissue (refs. 36,43; Fig. 3).

5http://www.nih.gov
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Similar to breast cancer, prostate cancer exhibits a distinct metabolic profile characterized by
high tCho and phosphocholine levels, along with an increase in the glycolytic products lactate
and alanine (44,45). Prostatic fluid from men with prostate cancer exhibit decreased citrate and
elevated spermine levels, compared with noncancer patients. Detection of citrate and spermine
in prostatic fluid by 1H-NMR correlated well with Gleason score and citrate concentrations in
semen or prostatic fluid from 28 cancer patients and 33 normal controls, and outperformed
prostate-specific antigen in cancer detection (11,18). Furthermore, before primary therapy for
prostate cancer, MRSI citrate detection increased accuracy and reduced the interobserver
variability of determining extracapsular extension, compared with anatomic MRI alone (46,
47).

Data in brain cancers is extensive with defined metabolomic biomarkers established from
studies of brain tumor specimens exhibiting discrete 1H-NMR spectra (48,49). In vitro, cell
lines from meningiomas, neuroblastomas, and glioblastomas showed metabolic patterns that
reflect differences in alanine, glutamate, creatine, phosphorylcholine, and threonine that are
distinct among the histologic subtypes. Clinically, metabolite levels from preoperative MRSI
images have been compared with histology results from biopsy specimens in 29 primary glioma
patients (50). Interestingly, in this study, the histologic presence of cancer correlated with
abnormally elevated tCho and decreased N-acetyl aspartate levels by MRSI. If further
validated, MRSI may be able to localize biopsy sites by targeting areas of maximal metabolic
abnormality, leading to improved diagnostic accuracy. This approach could result in the ability
to “metabolically map” an area for focal ablative procedures.

Metabolomic differences between healthy women and those with epithelial ovarian cancer
have been investigated (15). 1H-NMR spectroscopy was done on serum from 38 preoperative
epithelial ovarian cancer patients, 12 women with benign ovarian cysts, and 53 samples from
healthy women. Serum metabolic profiles correctly separated women with cancer from normal
premenopausal women and those with benign ovarian disease in 100% of cases; there was also
a 97.4% separation rate for cancer patients versus normal postmenopausal women (Fig. 4).
Interestingly, in another study, MS-based metabolic profiling of ovarian tumor tissue showed
a statistically significant differentiation between invasive ovarian carcinomas and borderline
tumors as reflected by differences in 51 metabolites (P < 0.01; ref. 14). Importantly, the
differences noted in these metabolites have previously been linked to prognosis in ovarian
cancer and correspond to pathways responsible for regulation of pyrimidine metabolism (51).

These results show the potential utility of metabolomics in cancer diagnosis and, in fact, have
culminated in the use of MRSI technologies in diagnosing breast and prostate cancer with the
cost of these tests being paid for by insurance providers (43,46).

Assessment of response to traditional therapy
The use of metabolomics for assessment of treatment effect, as both a predictive measure of
efficacy and as a pharmacodynamic marker, has been shown in vitro for both traditional
chemotherapy and hormonal agents. The use of 1H-NMR on human glioma cell culture
successfully predicted separation into drug-resistant and drug-sensitive groups before
treatment with 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. Exposure of hormone-
responsive Ishikawa human endometrial adenocarcinoma cells to tamoxifen resulted in dose-
dependent changes in nucleotides, suggesting that tamoxifen modifies RNA translation (19,
52).

In vivo, 1H-NMR, including HR-MAS, has been used to investigate the metabolic changes
associated with nitrosurea treatment of B16 melanoma and 3LL lung carcinoma tumors grown
subcutaneously in C57BL6/6J mice (20). During the growth-inhibitory phase, tumor samples
showed significant accumulation of glucose, glutamine, aspartate, and serine-derived
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metabolites, as well as decreased succinate, suggesting the reduction of nucleotide synthesis
and induction of DNA repair pathways. Growth recovery reflected metabolic adaptation,
including activation of energy production systems and increased nucleotide synthesis (Fig. 5).

In prostate cancer, citrate may be a marker of responsiveness to treatment based on a pilot study
where 16 high-risk prostate cancer patients were treated with chemotherapy, hormones, radical
prostatectomy, or radiotherapy, and subsequently followed with prostate-specific antigen
monitoring, MRI, and MRSI (53,54). A risk score using MRSI was developed based on both
tumor volume and metabolic abnormality. The MRSI score and MRI tumor/node stage was
then used to determine prostate-specific antigen relapse and was predictive in 15 of 16 cases.

There is an ongoing effort by the National Cancer Institute, researchers, clinicians, and industry
to expand the use of metabolomics, with particular attention to MRSI for the assessment of
therapeutic response (55). Choline phospholipid metabolism intermediates have been deemed
a potential biomarker for monitoring treatment efficacy in a variety of human cancers (reviewed
in ref. 12). In general, a decrease in the tCho signal on 1H-NMR equates to a response to
chemotherapy or radiation and may be an early marker of effect as it can be detected before
changes on conventional imaging in breast and prostate cancer, brain tumors, and non–
Hodgkin’s lymphoma.

Novel therapeutics
Therapeutics in oncology is moving toward the use of drugs that specifically target aberrant
pathways involved in growth, proliferation, and metastases. Biomarkers are being increasingly
used in the early clinical development of such agents to identify, validate, and optimize
therapeutic targets and agents; determine and confirm mechanism of drug action, as a
pharmacodynamic end point; and in predicting or monitoring responsiveness to treatment,
toxicity, and resistance (56). Current examples of using metabolomics in developmental
therapeutics are with tyrosine kinase inhibitors, proapoptotic agents, and heat shock protein
inhibitors (57-63).

One hypothesis explored was that treatment with targeted therapies, such as signal transduction
inhibitors, would result in a distinct metabolic profile between sensitive and resistant cells.
Imatinib, a tyrosine kinase inhibitor of the BCR-ABL oncogene, decreases cell proliferation
and induces apoptosis in human chronic myeloid leukemia (64-66). Metabolically, imatinib
interrupts the synthesis of macromolecules required for cell survival by deprivation of key
substrates (58). Investigating glucose metabolism changes in imatinib-treated human leukemia
BCR-ABL – positive cell lines with NMR showed decreased glucose uptake by inhibition of
glycolysis, but unlike classic therapeutics, stimulated mitochondrial metabolism leading to cell
differentiation (57). Imatinib also led to a significant decrease in phosphocholine in imatinib-
sensitive cells that correlated with a decrease in cell proliferation rate (57). Metabolomic
detection of imatinib resistance has also been reported; a decrease in mitochondrial glucose
oxidation and a nonoxidative ribose synthesis from glucose, as well as highly elevated
phosphocholine levels, was indicative of drug resistance and disease progression (58). These
data indicate that NMR metabolomics may provide a method for monitoring changes in cellular
metabolism that reflect early resistance to novel targeted agents. This could be particularly
useful in hematologic malignancies where frequent tissue sampling is feasible and early
metabolomic markers of resistance may dictate therapy adjustments that prevent overt
phenotypic progression.

Apoptosis has an established role in chemotherapy and radiation-induced cell death and its
absence correlates with treatment resistance and induction of prosurvival pathways (67,68).
Multiple new agents targeting apoptosis are currently in early clinical development, including
tumor necrosis factor–related apoptosis-inducing ligand, agonist death receptor antibodies, and
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inhibitors of the antiapoptotic proteins. FK866 is a novel agent that purportedly induces
apoptosis independent of anti-DNA effects by decreasing NAD+ levels (59). The metabolic
effects of FK866 on mouse mammary carcinoma cells using 1H-NMR showed a significant
increase in fructose-biphosphate with a subsequent decrease in pH and NAD+ resulting from
an incomplete glycolytic cycle (60). Other alterations observed included changes in guanylate
synthesis, pyridine nucleotide levels, and phospholipid metabolism, indicating there are
multiple aberrant cellular pathways resulting in apoptosis (60). High-resolution MAS-NMR
has showed that apoptotic activity can be characterized in cervical carcinoma biopsies before
and during treatment with external beam radiation, brachytherapy, and weekly chemotherapy
(61). In this study, 44 cervical cancer biopsies indicated that lipid metabolism differed both in
tumor cell fraction (percentage of tumor cells per tissue biopsy) and tumor cell density (number
of carcinoma cell nuclei per mm2 of tumor tissue). Ratios of fatty acid -CH2 to -CH3,
specifically, a lengthening of the fatty acid -CH2 chain, were associated with apoptosis, a
finding substantiated in another study of acute lymphoblastic leukemia cell cultures treated
with doxorubicin (62). These early studies suggest that metabolomics may be a useful
biomarker in the development and validation of proapoptotic agents.

Another interesting application of metabolomics is in the area of heat shock protein 90 (Hsp90)
inhibitors. Although their mechanism of action is not fully elucidated, current data suggest that
this family of agents increase the cellular destruction of client oncogenic proteins (69). In one
study, colon cancer xenografts were treated with an Hsp90 inhibitor and extracts of these
tumors were analyzed by 31P-NMR, reflecting a significant increase in phosphocholine,
phosphomonoester/phosphodiester ratio, valine, and phosphoethanolamine levels, indicating
altered phospholipid metabolism (63). These results, although preliminary, address that
metabolic changes could be used as pharmacodynamic biomarkers of Hsp90 inhibitors, a class
of agents that do not seem to result in classic antitumor effects.

The Future of Metabolomics in Oncology
Metabolomics is a novel discipline encompassing comprehensive metabolite evaluation,
pattern recognition, and statistical analyses. Biomarkers are widely used in clinical medicine
for prognostic or predictive interpretation of disease status. Metabolomics should be used for
identifying multivariate biomarkers, including fingerprints, profiles, or signatures, the patterns
of which characterize a state of cancer. By using this technology, we might eventually be able
to diagnose cancer earlier when it is still amenable to cure, determine aggressiveness of cancer
to help direct prognosis and therapy, and predict drug efficacy. These signatures can be practical
and accurate although they also require sophisticated analytic techniques (70,71).

The use of metabolomics as a diagnostic tool has been validated using citrate and choline in
prostate and breast cancer, respectively, both of which are now covered by health insurance
providers (11,43,46). The precedent for this type of omics technology includes colon cancer
diagnosis and prognosis by gene microarrays and ovarian cancer diagnosed with serum protein
profiles (72,73). Conceivably, metabolomics may play a role in tumors posing a diagnostic
challenge. Evidence suggests that metabolomic profiles are already used in diagnosing ovarian
cancer by analyzing either serum or tumor tissue (14,15). Detection of pancreatic cancer has
also been possible in vivo by analyzing cellular glucose use via GS/MS (7). Future studies
should evaluate the use of bodily fluids, for example ascitic fluid in ovarian cancer, pancreatic
secretions in pancreatic cancer, and/or bronchoalveolar or pleural fluid in lung cancer. If
pathognomonic profiles can be identified and validated in these fluids, metabolomics may save
time, cost, and effort in obtaining a definitive diagnosis in situations where no other test can
provide answers. Additionally, there could be a future role for metabolomics as a screening
tool, particularly in those tumors that readily produce or secrete easily accessible fluid.
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Similar to other strategies currently being investigated to individualize therapy, such as the
assessment of mutations or amplification of receptor tyrosine kinase genes in GIST,
metabolomic studies should be integrated into preclinical and clinical research and assessed
for predictive value (74-76). A form of in vivo metabolomics, PET imaging, with the use of
radioactive glucose, choline, or thymidine as metabolic end points, has already been evaluated
as a predictor of drug efficacy in some tumor types. In recurrent GIST, compared with standard
computed tomography scanning, [18F]fluor-deoxyglucose (FDG) PET was superior in
predicting early response to imatinib therapy when evaluated in 56 patients before and after
initiating imatinib therapy (77,78). Furthermore, changes on [18F]FDG PET have been
predictive of response to standard cytotoxic treatments in patients with breast cancer, locally
advanced or metastatic non–small cell lung cancer, ovarian cancer, after high-dose salvage
chemotherapy in relapsed germ-cell cancer, and in treatment-naïve patients with cervical
cancer (79-83). In hematologic malignancies not amenable to [18F]FDG PET imaging,
metabolomic analysis on circulating tumor cells after [13C]glucose administration could be
used in assessing treatment effects, thereby providing biological response information
noninvasively. This could also be applied to circulating tumor cells from solid tumors.

The principal objectives of early clinical trials are to determine the maximum tolerated dose
of new drugs or drug combinations while also collecting information on drug tolerability,
pharmacokinetics, and pharmacodynamics. Increasingly, biomarkers are being used
preclinically and in early clinical development to identify, validate, and optimize therapeutic
targets, to confirm mechanism of drug action, and as pharmacodynamic end points (56). As
discussed earlier, metabolomics is already being assessed as a pharmacodynamic marker of
novel agents, whereas another application is in the characterization of toxic effects. For
example, metabolomics can be used as a biomarker of hepatic, renal, and lung toxicity with
various metabolites, including glucose, lactate, lipoproteins, and amino acids, increasing or
decreasing providing a recognizable pattern associated with organ dysfunction (84-91). Much
of these data have not been validated and there is some overlap between various toxins but the
pattern, temporal rate of change, and extent of change in metabolites can still provide toxicity
assessments (13). Such patterns may be used for preclinical drug screening or as a means of
following a patient clinically to monitor target organ effects.

Although metabolomic technology has improved and evidence is accumulating to support its
use in clinical decision making, the discipline is still in its infancy and metabolomics has
somewhat lagged behind other omic sciences due to technical limitations, database challenges,
and costs. Future development and application will be dependent on several factors, such as
the establishment of spectral databases of metabolites and associated biochemical identities,
as well as cross-validation of NMR- or MS-obtained metabolites and correlation with other
quantitative assays. Lastly, it will be important to integrate the results of metabolomic
assessments with other omics technology so that the entire spectrum of the malignant
phenotype can be characterized.
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Fig. 1.
The flow of the “omics”sciences: genomics, proteomics, and metabolomics technologies in
individualized medicine for cancer patients. Metabolomics deals with global metabolic
profiling and its dynamic changes by monitoring as many as possible endogenous low-weight
metabolites in a single analytic assay. Metabolic changes occur through a number of
mechanisms, including direct genetic regulation and alterations in enzymatic and metabolic
reactions. Techniques applied to metabolic profiling include NMR spectroscopy and MS.
Bioinformatics, using techniques developed in the fields of computational science and
statistics, remains a key element in data management and analysis of collected data sets.
Identified genes, proteins, and metabolites can be assessed by tracer-based molecular imaging
using MRI/MRSI and PET.
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Fig. 2.
Three major steps of metabolomics analysis. The example is given for imatinib treatment in
chronic myeloid leukemia cells using (1) 1H-NMR spectra of cell extracts followed by principal
component analysis for pattern recognition → (2) metabolite identification resulting in a
biomarker → (3) metabolite quantification and validation. Adapted and reproduced with
permission from Thomson Scientific and Serkova NJ, Spratlin JL, Eckhardt SG: NMR-based
metabolomics: Translational application and treatment of cancer. Current Opinion in
Molecular Therapeutics 2007; 9(6):572–85. Figure 4. ©2007 Thomson Scientific.
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Fig. 3.
Preclinical to clinical translation of metabolomics discoveries in breast cancer. Proton magnetic
resonance spectra distinguishing between (A) orthotopically grown xenograft tumors of
malignant human MDA-MB-231 breast cancer and (B) nonmalignant human MCF-12A
mammary epithelial cells showing low glycerophosphocholine and high phosphocholine levels
in breast cancer compared with high glycerophosphocholine and low phosphocholine in
nonmalignant epithelial cells. C, MRSI of a palpable mass in a 56-y-old female, which was a
biopsy-proven cancer of the breast with a corresponding Cho peak (top), whereas a suspicious
lesion detected at screening MRI in the breast of a 38-y-old female, positive for the BRCA1
gene, shows no spectral Cho peak and was benign at biopsy. GPC, glycerophosphocholine;
PC, phosphocholine; tCho, total choline containing metabolites; Cho, choline; Lip, lipid; Lac,
lactate. (A and B) Adapted and reproduced with permission from the American Association
for Cancer Research (AACR), Inc.: Morvan D, Demidem A. Metabolomics by proton nuclear
magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug
efficacy and tumor adaptive metabolic pathways. Cancer Research 2007; 67:2150–9. Figure
3. © 2007 AACR, Inc. (C) Reproduced with permission fromThe Radiological Society of North
America (RSNA) and Dr. Bartella: Bartella L, Thakur SB, Morris EA, et al. Enhancing
nonmass lesions in the breast: evaluation with proton (1H) MR spectroscopy. Radiology 2007;
245:80–7, Figures 3 and 5. © 2007 RSNA.
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Fig. 4.
Use of metabolomics for ovarian cancer detection. Use of NMR metabolite detection followed
by principal component analysis shows considerable separation between (A) epithelial ovarian
cancer (■) and premenopausal women (▼) and (B) epithelial ovarian cancer (■) and
postmenopausal women (▼) as depicted by group clustering. Adapted and reproduced with
permission of Wiley-Liss, Inc., a subsidiary of JohnWiley & Sons, Inc. Odunsi K, Wollman
RM, Ambrosone CB, et al. Detection of epithelial ovarian cancer using 1H-NMR-based
metabolomics. Int. J. Cancer; 113:782–88. Figure 3. © 2005 JohnWiley & Sons, Inc.
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Fig. 5.
Metabolomic changes as a pharmacodynamic marker of treatment response. Metabolomic
profiling of B16 melanoma (top) and 3LL pulmonary carcinoma tumors (bottom) showing
variations in multiple metabolites before (black columns) and after (gray columns)
chloroethylnitrosurea treatment. Bars, SD. Vertical scale, percentage of change respect to
untreated group. Inset, log scale for metabolites with the largest variations. *, P < 0.05; **,
P < 0.01; ***, P < 0.001. Glc, glycine; Lac, lactate; Ala, alanine; Suc, succinate; Ace, acetate;
PUF, polyunsaturated fatty acid; Gln, glutamine; Glu, glutamate; Asp, aspartate; Pro, proline;
Arg, arginine; Leu, leucine; Lys, lysine; Met, methionine;Thr, threonine; Phe,
phenylalanine;Tyr, tyronsine; tCr, total creatinine; DMG, dimethylglycine; For, formate; Gly,
glycine; hTa, hypotaurine;Tau, taurine; Cho, choline; GPC, glycerophosphocholine; GPE,
glycerophosphoethanolamine; PC, phosphocholine; PE, phosphoethanolamine; PtC,
phosphotidylcholine. Adapted and reproduced with permission from theAmerican Association
for Cancer Research (AACR), Inc.: Glunde K, Jie C, Bhulwalla ZM. Molecular causes of the
aberrant choline phospholipid metabolism in breast cancer. Cancer Research 2004; 64:4270–
6. Figure 3. © 2007 AACR, Inc.
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Table 1
Biofluid and sample preparation requirements

Biofluid Required sampling handling

Urine Add deuterated phosphate buffer to 0.2-0.4 mL urine

Blood/plasma/serum For 0.5 mL of heparinized blood product

—Add deuterium oxide (to lock)

—Add acetonitrile (for protein precipitation)

—Add methanol/chloroform extraction (for lipid extraction)

CSF Add deuterium oxide to 0.5 mL of CSF

EPS Add deuterium oxide to 0.03-0.10 mL of EPS

Bile Add deuterium methanol to 0.5 mL of bile

BALF Add deuterium oxide to 0.5 mL of BALF

Tissue —Add 0.01 mL of deuterium oxide to 3-10 g of tissue in MAS rotor

—Add perchloric acid extraction on 20-200 g frozen tissue

—Add methanol/chloroform extraction to 20-200 g frozen tissue

NOTE: Adapted from ref. 13.

Abbreviations: CSF, cerebrospinal fluid; EPS, expressed prostatic secretions; BALF, bronchoalveolar lavage fluid; MAS, magic angle spinning.
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